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ABSTRACT 
 

In this paper, optimal design of arch dams is performed under frequency limitations. 
Colliding Bodies Optimization (CBO), a recently developed meta-heuristic optimization 
method, which has been successfully applied to several structural problems, is revised and 
utilized for finding the best feasible shape of arch dams. The formulation of CBO is derived 
from one-dimensional collisions between bodies, where each agent solution is considered as 
the massed object or body. The design procedure aims to obtain minimum weight of arch 
dams subjected to natural frequencies, stability and geometrical limitations. Two arch dam 
examples from the literature are examined to verify the suitability of the design procedure 
and to demonstrate the effectiveness and robustness of the CBO in creating optimal design 
for arch dams. The results of the examples show that CBO is a powerful method for optimal 
design of arch dams. 
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1. INTRODUCTION 
 

An arch dam can be defined as a concrete structure, the base of which is less than half of its 
height and for transmission of part of the water load laterally into the valley flanks has to 
rely on its curvature in the plan. Arch dams may contain as little as 20% of the concrete of 
the equivalent gravity dams. Arch dams are designed, both in the single or double-curvature 
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forms. In double-curvature form, for minimizing the volume of an arch dam; its radius of 
curvature should change from crest to base [1]. 

Natural frequencies are fundamental parameters affecting the dynamic behavior of the 
structures. Therefore, some limitations should be imposed on the natural frequency range to 
reduce the domain of vibration and also to prevent the resonance phenomenon in dynamic 
response of Optimization of structures based on frequency limitation has been widely 
employed during the last two decades. Mass reduction conflicts with the frequency 
constraints, especially when they are lower bounded. Therefore, frequency constraints are 
highly non-linear, non-convex and implicit with respect to the design variables [2]. To 
implement a practical arch dam design, many constraints such as stress, displacement, 
stability requirement, and frequency constraints should be considered [1]. In the present 
study, for simplicity of the optimization operations and comparison with the existing results 
from literature, only frequency and some geometrical constraints are considered. 

Recently some progress has been made in optimum design of arch dams considering 
different constraints. Almost all of these have used conventional methods for analysis 
approximation and optimization. These methods usually employ derivative calculations and 
can be trapped in local optima. The shape optimization of arch dams has been developed 
after appearing and development of finite element method in late 1950’s. Rajan [3], Mohr 
[4] and Sharma [5] developed solutions based on membrane shell theory. Sharpe [6] was the 
first to formulate the optimization as a mathematical programming problem. A similar 
method was also adopted by Rickeetts and Zienkiewicz [7] who used finite element method 
for stress analysis and Sequential Linear Programming (SLP) for the shape optimization of 
arch dams under static loading.  

Recently, the Colliding Bodies Optimization (CBO) has been introduced by authors as an 
efficient optimization algorithm for the optimum design of structures. The CBO algorithm is 
based on laws of collision between bodies. This algorithm can be considered as a multi-
agent approach, where each agent is a Colliding Body (CB). As will be explained in detail, 
each CB is considered as a massed object with a specified the mass and velocity before the 
collision. After occur of collision, each CB moves to the new position according to the new 
velocity [8-10]. In this study, the CBO algorithm is employed for volume or cost 
optimization of arch dams, considering the concrete volume and the casting areas. The 
results of the solved examples demonstrate that CBO leads to better results than CSS and 
PSO (see Kaveh [11] for recently developed meta-heuristic algorithms). 
 
 

2. GEOMETRICAL MODEL OF ARCH DAM 
 
2.1 Shape of the central vertical section 

The shape of a double-curvature arch dam has two basic characteristics: curvature and 
thickness. Both the curvature and the thickness change in horizontal and vertical directions. 
For the central vertical section of double-curvature arch dam, as shown in Fig. 1, one 
polynomial of nth order is used to determine the curve of upstream boundary and another 
polynomial is employed to determine the thickness. In this study, a parabolic function is 
considered for the curve of upstream face as: 
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Figure 1. Central vertical section of an arch dam 

 
where h and s are the height of the dam and the slope at crest respectively, and the point 

where the slope of the upstream face equals to zero is z=β h in which β is constant. 
By dividing the height of dam into n equal segments containing n + 1 levels, the 

thickness of the central vertical section can be expressed as: 
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in which tci is the thickness of the central vertical section at the ith level. Also, in the 

above relation Li(z) is a Lagrange interpolation function associated with the ith level and can 
be defined as: 
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where zi denotes the z coordinate of the ith level in the central vertical section. 
 

3.2 Shape of the horizontal section 

As shown in Fig. 2, for the purpose of symmetrical canyon and arch thickening from crown 
to abutment, the shape of the horizontal section of a parabolic arch dam is determined by the 
following two parabolas: 

At the upstream face of the dam: 
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Figure 2. The parabolic shape of a horizontal section of dam 

 
At the downstream face of the dam: 
 

)()(
)(2

1
),( 2 ztzbx

zr
zxy c

d
d  (5)

 
where ru and rd are radii of curvatures corresponding to the upstream and downstream 

curves, respectively. Here, functions of nth order with respect to z can be used for these 
radii: 
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where rui and rdi are the values of ru and rd at the ith level, respectively. 
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3. ARCH DAM OPTIMIZATION PROBLEMS 
 

The optimization problem can formally be stated as follows: 
 

Find               X = [x1,x2,x3,..,xn] 
to minimizes Mer(X) = f(X) × fpenalty(X) 

subjected to    gi(X)0, i=1,2,…,m 
ximin ≤ xi ≤ ximax 

(7)

 
where X is the vector of design variables with n unknowns, gi is the ith constraint from m 

inequality constraints and Mer(X) is the merit function; f(X) is the cost ; fpenalty(X) is the 
penalty function which results from the violations of the constraints corresponding to the 
response of the arch dam. Also, ximin and ximax are the lower and upper bounds of design 
variable vector, respectively. 

Exterior penalty function method is employed to transform the constrained dam 
optimization problem into an unconstrained one as follows: 
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where γp is penalty multiplier. 
 

3.1 Design variables 

The most effective parameters for creating the arch dam geometry were mentioned in 
Section 2. The parameters can be adopted as design variables: 
 

 dndunucnc rrrrttsX ............ 111 (9)
 

Where X vector of design variables contains 3n+2 shape parameters of arch dam. 
 

3.2 Design constraints 

Design constraints are divided into some groups including the behavioral, geometrical and 
stability constraints. The behavioral constraints are the restricted natural frequencies that are 
defined as follows: 
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where frn , frln and frun are the nth natural frequency, lower bound and upper bound of 
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the nth natural frequency, respectively. Here, nfr is the number of natural frequencies. The 
most important geometrical constrains are those that prevent from intersection of upstream 
face and downstream face as: 
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r
rr
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where rdn and run are the radii of curvatures at the down and upstream faces of the dam in 

nth position in z direction. The geometrical constrain that is applied to facilities the 
construction, is defined as: 
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Where s is the slope of overhang at the downstream and upstream faces of dam and sall is 

its allowable value. 
 

3.3 Cost function 

The cost function is the construction cost of the dam, which may be expressed as: 
 

)()()( XapXvpXf av  (13)
 

Where v(X) and a(X) are the concrete volume and the casting area of dam body. pv and 
pa are the unit price of concrete and casting, respectively. 

The volume of concrete can be determined by integrating from dam surfaces as: 
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In which Area is an area produced by projecting of dam on xz plane. The areas of casting 

can be approximately calculated by summing of the areas of upstream and downstream faces 
as follows: 
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Where au and ad are the casting areas of upstream and downstream faces, respectively. To 

evaluate v(X) and a(X) a computer program is coded using MATLAB [12]. 
 

3.4 Water-dam interaction 

In this study, the generalized Westergaard [13] method is used in order to include dam-



COLLIDING BODIES OPTIMIZATION FOR DESIGN OF ARCH DAMS WITH ... 

 

479

reservoir interaction. In this method, hydrodynamic pressure exerted on the face of the dam 
is equivalent to the inertia forces of a body of water attached to the dam and moving back 
and forth with the dam while the rest of reservoir water remains inactive [14]. The general 
formulation is based on the parabolic shape for body of water with a base width equal to 7/8 
of the height, as shown in Fig. 3. Finally, a full 3x3 added-mass matrix at each nodal point 
on the upstream face of the dam is obtained as: 
 


TAm  (16)

 

 
Figure 3. The generalized Westergaard added mass method 

 
Which A is the tributary surface area and λT is a vector of normal direction cosines for 

each point. Α is the Westergaard pressure coefficient: 
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Which ρw is the density of water, H and Z are as defined in Fig. 3. 
In the analysis, the dam-foundation interaction is also omitted to avoid the extra 

complexities that would otherwise arise. 
 

3.5 Verification of the finite element models 

In order to validate the finite element model with the considered assumptions, an idealized 
model of Morrow Point arch dam (Fig. 4) which is located 263 km southwest of Denver, 
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Colorado, is investigated. The properties of the dam in details can be found in [15]. The 
physical and mechanical properties involved here are the concrete density (2483N.s2/m4), 
the concrete poison’s ratio (0.2) and the concrete elasticity (27580×104 MPa).  

In the present work the first two natural frequencies of the mode of Morrow Point dam 
are determined from the frequency response function for the crest displacement and the 
results are compared to those reported in the literature [15]. The natural frequencies from the 
other literatures and present work are given in Table 1. It can be observed that a good 
conformity is achieved between the results of present work with those of the previously 
reported results. 
 

 
Figure 4. The finite element model of the Morrow Point arch dam 

 
Table 1: Natural frequencies (Hz) of the Morrow Point arch dam 

 
 

4. THE CBO ALGORITHM 
 

The CBO mimic the one-dimensional collision law between bodies (Fig. 5). In the CBO, 
each solution candidate iX  containing a number of variables (i.e.  jii XX ,  ) is considered 

as a colliding body (CB) with mass m. The magnitude of mass of each CB is proportional to 
this fitness. The massed objects composed of two main groups equally; namely stationary 
and moving objects. In order to improve the positions of the moving objects and to push 
stationary objects towards better positions, the moving objects moves to follow stationary 

 Natural frequencies (Hz) 

Case Reservoir 
Tan & Chopra (Tan Chopra 1996) Present work 

Symmetric mode Antisymmetric mode 
Symmetric 

mode
Antisymmetric 

mode
1 Empty 4.27 3.81 4.30 3.77 
2 Full 2.82 2.91 2.84 3.05 
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objects and a collision occur between pairs of objects. After the collision, new positions of 
the colliding bodies are updated based on the new velocity by using the collision laws; and 
the lighter and heavier CB moves sharply and slowly, respectively.  

 

 
Figure 5. The collision between two bodies, (a) before collision, (b) colliding, (c) after collision 

 
The pseudo-code for the CSS algorithm can be summarized as follows: 
Step 1: Initialization. The initial positions of CBs are determined with random 

initialization of a population of individuals in the search space: 
 

,,...,2,1,)( minmaxmin
0 nixxrandxxi  (18)

 
Where, 0

ix  determines the initial value vector of the i th CB. minx  and maxx  are the 

minimum and the maximum allowable values vector for the variables; rand is a random 
number in the interval [0,1]; and n is the number of CBs. 

Step 2: Mass determination. Calculate the body mass for each CB as: 
 

nk
kfit

mk ,...,2,1,
)(

1
 (19)

 
Where fit(i) represents the fitness value of the agent i; n is the number of population size. 

It can be seems that a CB with good values exerts a larger mass than the bad ones.  
Step 3: Mating of bodies. The CBs fitness is sorted in an ascending order (Fig. 6a). The 

sorted CBs are divided to two groups equally; stationary and moving group. In stationary 
group, the CBs are good agents which these are stationary, and the velocity of these bodies 
before collision is zero:  
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In moving group, the CBs move toward the stationary CBs. Then better and worse CBs, 

i.e. agents with upper fitness value, of each group are collided together (Fig. 6b). The 
change of the body position represents the velocity of these bodies before collision as: 
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Where, iv  and ix  are the velocity and position vector of the i th CB in this group, 

respectively; 
2

n
i

x
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 is the i th CB pair position of ix  in the previouse group. 

 

 
Figure 6. (a) The sorted CBs in an increasing order, (b) The pairs of objects for the collision 
 
Step 4: Updating velocities. After the collision, the velocity of the bodies in each group 

are evaluated using collision laws and the velocity before collision. The velocity of each 
moving CBs after the collision is: 
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Where, iv  and '

iv  are the velocity of the i th moving CB before and after the collision, 

respectively; im  is the mass of the i th CB; 
2

n
i

m


 is mass of the i th CB pair. The velocity of 

each stationary CB after the collision is: 
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Where, 

2

n
i

v


 and '
iv  are the velocity of the i th moving CB pair before and the i th 

stationary CB after the collision, respectively; im  is mass of the i th CB; 
2

n
i

m


 is mass of the 

i th moving CB pair;   is the coefficient of restitution (COR), which is defined as the ratio 
of the separation velocity of two agents after collision to the approach velocity of two agents 
before collision. For most of the real objects,   is between 0 and 1, which after collision the 
separation velocity of bodies is low and high, respectively. Therefore, to control exploration 
and exploitation rate, COR decreases linearly from unity to zero and   is defined as: 
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1
iter

iter
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where iter is the actual iteration number and itermax is the maximum number of iterations. 
Step 5: Updating positions. New positions of CBs are evaluated using the generated 

velocities after the collision in position of stationary CBs.  
The new positions of each moving CBs is: 
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Where, new

ix and '
iv  are the new position and the velocity after the collision of the i th 

moving CB, respectively; 
2

n
i

x


 is the old position of i th stationary CB pair. Also, the new 

positions of each stationary CBs is: 
 

2
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ivrandxx ii
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Where, new

ix , ix  and '
iv  are the new position, old position and the velocity after the 

collision of the i th stationary CB, respectively. rand is a random vector uniformly 
distributed in the range (-1,1). 

Step 6: Terminating criterion. The optimization is repeated from step 2 until a 
termination criterion, such as the maximum number of iterations, is satisfied. 

Apart from the efficiency of the CBO algorithm, which is illustrated in the next section 
through numerical examples, the independence of the algorithm from internal parameters is 
one of the main advantageous of the CBO algorithm. Also, the formulation of CBO 
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algorithm does not use the memory which saves the best-so-far solution (i.e. the best 
position of agents from the previous iterations). 

 
 

5. NUMERICAL EXAMPLES 
 

In this section, two common arch dam are optimized utilizing the new algorithm. A finite 
element model based on free vibration analysis for the double-curvature arch dam is 
presented. The arch dam is treated as a three dimensional linear structure. To mesh of the 
arch dam body eighty-node isoperimetric solid element is used. To evaluate the eigenvalues 
of arch dam a computer program is coded using Opensees [16].  

 
5.1 Hypothetical model 

As the first example, a well-known benchmark problem in the field of shape optimization of 
the arch dam, a dam with a height of 180 m is considered. The width of the valley in its 
bottom and top are 40 m and 220 m, respectively (Fig. 7). For this test example, the 
construction cost is the objective function. The unit prices for concrete and casting are 
considered as pv = $33.34 and pt = $6.67, respectively. Material properties are: elastic 
modulus of E=21 GPa, poison’s ratio of 0.2 and mass density of ρ=2400 kg/m3. In this 
example, CBO population size is set as 20 individuals. The maximum number of iterations is 
also considered as 200. 
 

 
Figure 7. The valley dimensions of the arch dam 

 
The dam is modeled by 11 shape design variables as: 
 

 321321321 ddduuuccc rrrrrrtttSX   (25)
 
The lower and upper bounds of design variables using empirical design methods are 

considered as Varshney [17]: 
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In current study, the following natural frequency constraints are imposed: 
 

HzfrHzfrHzfrHzfr 3.83.73.63 4321  (27)
 
Two cases are considered for this example: 
Case 1: the reservoir is empty.  
Case 2: the reservoir is full and dam-reservoir interaction is considered in the process of 

analysis. 
This example was solved by Kaveh and Mahdavi [18] using the CSS and PSO algorithms 

for Case 1. Table 2 compares the optimized design and the required number of structural 
analyses with literature for both cases. It can be seen that the CBO algorithm finds the best 
design and requires less structural analyses than other optimization techniques. The 
optimum weight of dam is also considerably heavier for Case 2, when dam-reservoir 
interaction is considered. Fig. 8 shows the convergence curves of the CBO, CSS and PSO 
for Case 1. Although CSS and PSO were considerably faster in the early optimization 
iterations, CBO converged to a significantly better design without being trapped in local 
optima. Table 3 shows the nature frequencies of the optimized structure obtained previously 
by the authors and the results obtained by the present work. 

 

 
Figure 8. The convergence curves for the PSO, CSS and CBO (Case 1) 

 

5.2 Morrow Point Arch Dam 

In second example, the optimization of Morrow Point arch dam, for which the properties are 
mentioned previously, is examined. For this test example, volume of the concrete is the 
objective function. To create the dam geometry, three fifth-order functions are considered 
for tc(z), ru(z), and rd (z). Thus, by accounting for two shape parameters needed to define 
the curve of upstream face b(z), the dam can be modeled by 20 shape design variables as: 
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 654321654321654321 dddddduuuuuucccccc rrrrrrrrrrrrttttttsX   (28)
 

Table 2: Optimum designs of the arch dam obtained by different methods 

Variable No. 

Kaveh and Mahdavi (Kaveh 
and Mahdavi 2011) 

Present work 

PSO CSS CBO 
Case 1 Case 1 Case 2

1 0.2577 0.0216 0.2673 0.2717 
2 0.8195 0.6141 0.655 0.6876
3 8.7656 8.0144 6.6061 4.0974
4 8.9711 8.0010 8.0205 26.0802 
5 17.6736 17.2981 14.5962 12.1907
6 117.6666 159.6764 171.9731 114.9598 
7 79.1041 91.8348 70.1358 98.9373
8 42.8860 46.7626 30.4945 48.4383
9 63.7034 85.2251 83.1802 114.904 
10 54.0178 52.3796 49.9592 47.3008
11 26.3438 29.8441 27.0186 22.9041

cost of arch dam ($106) 6.403 6.030 5.680 9.370 
number of analyses 5,000 5,000 4,000 4,000 

 
Table 3: Natural frequencies (Hz) of the optimized arch dam 

Frequency 

number 

Kaveh and Mahdavi (Kaveh and 
Mahdavi 2011) 

Present work 

PSO CSS CBO 
 Case 1 Case 1 Case 2 

1 5.056 4.492 4.668 4.285 
2 6.568 6.362 6.492 6.304 
3 7.375 7.300 7.300 7.742 
4 8.415 8.350 8.300 8.542 

 
The lower and upper bounds of design variables required for the optimization process can 

be determined using preliminary design methods [17]: 
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Natural frequency constraints are considered as: 
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HzfrHzfrHzfrHzfr 98.664 5421  (30)

 
Two cases are considered for this example: 
Case 1: The reservoir is empty. In order to show the effect of the number of agent on 

results, the agent size was set to: 10, 20, 30 and 40 individuals for this case. 
Case 2: Dam-reservoir interaction is considered in the process of analysis. Similarity, to 

show the effect of the water depth of reservoir, the water depth is considered as 25, 50, 75 
and 100 percent of the reservoir height for this case. 

The maximum number of iterations is considered as 200 for both cases. Table 4 
represents the design vectors and the volume of arch dam obtained utilizing various numbers 
of agents using the CBO algorithm. Undoubtedly, the optimum weight becomes less, if 
higher number of agents is considered. On other hand, the number of objective function 
evaluation grows in the optimization process. As it can be seen after the number of agents 
becomes 20, the optimum weight does not change considerably and the objective function 
evaluation increases. Therefore, the number of agents is considered 20 in Case 2. Table 5 
lists the designs developed by the CBO algorithm for various values of water depth of 
reservoir. The results show that the optimum weight of arch dams is 40.28%, 34.55%, 
13.56%, and 1.63% heavier than the empty reservoir (Case 1) for different water depth of 
25, 50, 75 and 100 percent of the reservoir height, respectively. 

 
Table 4: Optimum designs of the arch dam obtained by different agent sizes using the CBO 

algorithm for Case 1 

Variable No. Number of agents 
 10 20 30 40 

S 0.1174 0.0919 0.2426 0.118 
  0.7647 0.6381 0.9049 0.6047 

1ct  4.806 3.0582 3.0261 3.077 

2ct  7.5395 5.0054 5.3826 5.0341 

3ct  10.1154 10.0057 10.1436 10.0029 

4ct  15.0472 15.0091 15.0922 15.0159 

5ct  20.5051 21.2606 20.0265 20.0529 

6ct  25.5795 29.3904 25.0384 25.6688 

1ur  129.393 103.5044 132.509 122.0125 

2ur  102.4197 101.6245 108.0625 101.541 

3ur  86.2968 90.0168 83.1949 81.9052 

4ur  67.2429 69.4739 72.2955 71.0237 

5ur  54.0329 47.9893 56.9688 53.1161 

6ur  43.0487 40.8733 40.7917 39.2411 
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1dr  124.0519 103.4444 130.7955 115.2456 

2dr  100.7791 101.6211 106.4657 100.6899 

3dr  86.283 89.5847 82.0417 81.2649 

4dr  67.1989 63.532 71.9666 70.9051 

5dr  53.7997 47.9098 56.6816 52.9816 

6dr  40.197 35.3833 37.7116 38.7547 
concrete volume (m3) (105) 2.2332 2.0958 2.049 2.0269 

 
Table 5: Optimum design of the arch dam obtained by different water depths using the CBO 

algorithm for Case 2 

Variable No. Water depths (% the reservoir height) 
 100 75 50 25 

S 0.2226 0.2862 0.2771 0.273 
  0.9364 0.8427 0.5771 0.7687 

1ct  3.2143 3.0093 3.0045 3.0896 

2ct  14.6602 12.3889 7.6267 5.0814 

3ct  17.2727 16.4187 10.2203 10.0435 

4ct  15.0077 15.0161 15.2465 15.072 

5ct  22.3368 21.8639 23.7625 20.0689 

6ct  25.59 31.8375 30.7036 26.1521 

1ur  130.0986 117.2926 105.4596 117.4806 

2ur  87.53 97.9331 101.0327 106.3058 

3ur  96.5577 95.2853 85.4975 84.8487 

4ur  61.3002 73.6625 71.5594 73.878 

5ur  51.932 51.8508 54.9586 54.305 

6ur  42.8655 39.5182 41.2766 40.1442 

1dr  129.5493 117.0644 105.3674 107.2574 

2dr  86.4328 95.8001 100.8296 106.0684 

3dr  80.5763 77.7262 77.243 84.3591 

4dr  60.574 73.6579 71.3418 73.7493 

5dr  48.9599 51.8035 52.5522 49.7874 

6dr  37.2583 39.3527 35.8985 37.5047 
concrete volume (m3) (105) 2.940 2.820 2.380 2.130 

 
Fig. 9 shows the convergence curves by various numbers of agents for the optimum 
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design of arch dam using the CBO algorithm. As it can be seen, the objective function and 
convergence rate is decreased by increasing the number of agents. 

 
Figure 9. The convergence curves for the CBO by different number of agents (N) 

 
 

6. CONCLUDING REMARKS 
 
In this paper, a new, simple and efficient meta-heuristic algorithm, so called the Colliding 
Bodies Optimization (CBO), has been proposed for optimum design of arch dams. The 
governing laws from the physics initiate the base of the CBO algorithm, where these laws 
determine the movement process of the objects. In this algorithm, each agent solution 
considered as the colliding body (CB). After a collision of two moving body which has 
specified the mass and velocity, these separated with new velocity. The main advantage of 
the CBO is that unlike many other meta-heuristics it is parameter independent. 

The shape optimization of two double-curvature arch dam is performed with frequency 
limitations. The concrete volume and cost of the arch dams, which includes the concrete 
volume and the casting areas, are considered as the objective function, with frequency, 
geometrical and stability constraints. Different scenarios for the water depth and the number 
of agents are also considered for the second example. Form the results of this study it can be 
seen that the CBO leads to better results than both standard CSS and PSO. Future research 
will investigate optimization of arch dam with different constraints and more precisely 
design such as, for example, stress limitation, earthquake loading and dam-foundation-water 
interaction. 
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